Snake River Plain Model Upgrade

Donna M. Cosgrove Gary S. Johnson Idaho Water Resources Research Institute University of Idaho

Introduction

- Model History
- How We Got Here
- Collaborators
- What's New
- Data Sources
- Model Details
- Model Calibration

Model History

- Original Model Built in 1970s
 - Built by University of Idaho/IDWR
 - Used Home-Grown Modeling Code
 - Calibrated using 1980 Conditions
- Converted to MODFLOW in 1997
- Model Expanded to Include Henrys Fork

How We Got Here

- Increased Need for Conjunctive Management
 - Recognized Model is Best Tool
 - Concerns About Model Accuracy and Documentation of Changes
- Original Model Calibrated to 1980 Conditions
- Water Budget not Balanced
- Model Not Well Documented

How We Got Here (cont'd)

- Need for Enhanced Model
- Eastern Snake Hydrologic Modeling Committee Formed in 1998
- Assessed Modeling Needs in Basin
- Idaho Power Volunteered Matching Funds
- Idaho Legislature 3-Year Appropriation

Collaborators

- Idaho Department of Water Resources
 - Paul Castelin, Program Manager
 - Garth Newton
 - John Lindgren
 - Hal Anderson
 - Dick Lutz
 - Brenda Gilliland
- Idaho Water Resources Research Institute
 - Donna Cosgrove, Technical Lead
 - Bryce Contor
 - Allan Wylie
 - Gary Johnson
 - Rodger Jensen
 - Rick Allen

Collaborators (cont'd)

- Idaho Power
 - Jon Bowling
 - Pete Vidmar
- U.S. Geological Survey
 - Dave Clark
 - Steve Lipscomb
 - Pat Lambert
 - Jon Hortness

Collaborators (cont'd)

- Bureau of Reclamation
 - R. D. Schmidt
 - Jim Oakleaf
- Outside Consultants (representing interest groups)
 - Chuck Brockway
 - Chuck Brendecke
 - Greg Sullivan
- Calibration Consultant
 - John Doherty

Approach

- IDWR and IWRRI led the effort

 Weekly or bi-weekly video conferences
- ESHMC Reviewed Design Decisions
 - Quarterly Meetings
 - Design Documentation
- Open Review
 - Provided Critical Feedback
 - Fostered Acceptance by all Parties

What's New

- 22-Year Recharge/Discharge Data Set
- Smaller Grid Size
 - 1 mile x 1 mile
 - Approximately 11,000 Active Cells
- Better River Representation
- Calibration Using Automated Tools

 Matches to Thousands of Data Points

Original Model Grid

Data Sources

- Previous Reports
 - USGS Snake Plain Reports
 - IDWR Reports
 - IWRRI Reports
- USGS Stream Gage and Water Level Data
- IDWR GIS Data
- Watermaster Records
- National Weather Service
- National Agriculture Statistics Service

ET Mapped to Model Cell

Ν

Field Data Collected

- Three Synoptic Water Level Measurements

 Conducted by USGS
- Acoustic Doppler Stream Gaging
 Conducted by Idaho Power and USGS
- Irrigation Return Flows

 Conducted by Idaho Power
- Conducted Field Interviews with Canal Company Managers

Model Details

- Numerical Model Using USGS Modflow
- 104 Rows, 209 Columns, Single Layer
- Represented Aquifer as Confined System

 Generally Accepted as Unconfined
 - Behaves More Like Confined System
- Five Snake River Reaches
- Six Spring Reaches (Thousand Springs Area)

Snake River

- 5 river reaches above Minidoka
 - Ashton to Rexburg
 - Heise to Shelly
 - Shelly to Blackfoot
 - Blackfoot to Neeley
 - Neeley to Minidoka
 - 230 river cells

Springs

- 6 Spring reaches
 - Devils Washbowl Buhl
 - Buhl Thousand Springs
 - Thousand Springs
 - Thousand Springs Malad
 - Malad
 - Malad Bancroft
 - 45 drain cells

Model Calibration

- Calibrated to 22 Years of Data
 - Data Represented in 6-Month Increments
- Calibrated Model Parameters
 - Transmissivity
 - Storativity
 - River and Spring Conductance
 - Spring Elevation
- Used PEST Parameter Estimation Software
 - Initially Calibrated Steady State
 - Ultimately Coupled Steady State and Transient

Model Calibration (cont'd)

- Measured Observations
 - Hydraulic head targets
 - River reach gains and losses
 - Individually Measured Springs
- Calibration Method
 - Seasonal Changes in Aquifer Water Levels
 - Long Term Trends in Water Levels
 - Changes in Spring Discharge
 - Mean and Standard Deviation of Spring Discharge

Calibration Results

Steady State Head Matches

- Head
 - Pink line is 45°
 - If this were a perfect match
 - Y = 1x + 0
 - $R^2 = 1$

Steady State Water Table

Steady State River Gains and Losses

- Gain and loss match
 - Pink line is 45°
 - If this were a perfect match
 - Y = 1x + 0
 - $R^2 = 1$

- Hundreds to thousands of observations
 - Lots of data
 - Limited spatial coverage

Mass Measurement

- Observations collected on behalf of this modeling effort
 - 3/1/2001 -5/8/2002

Mass measurement (tran116)

Mass measurement (tran116)

3

2

1

0

-1

-2

-3

Feet

 Annual observations in wells

Upper Snake River

• Snake River reaches

Snake River (tran116)

Ashton to Rexburg

Snake River (tran116)

Devils Washbowl

Devils Corral

• Crystal Springs

• Briggs Spring

• Box Canyon Spring

• Thousand Springs

Spring Reaches

 Spring reach gain plots

Spring Targets

- Spring targets
 - Pink line is 45°
 - If this were a perfect match
 - Y = 1x + 0

•
$$R^2 = 1$$

• Thousand Springs

• Malad to Bancroft

Spring Reaches

 Comparison with Kjelstrom calculations of average annual spring discharge

Summary

- Model Enhancement Collaborative Effort

 Many Organizations and Technical Personnel
- Calibration Very Successful
- Model Results Not Perfect
 - Best Tool Available
- Regional Model
 - Model Use Should be Regional
 - Not Appropriate for Highly Local Application

More Information?

Donna Cosgrove 208-282-7914 cosgrove@if.uidaho.edu Gary Johnson 208-282-7985 johnson@if.uidao.edu Information at our web site: http://www.if.uidaho.edu/~johnson/ifiwrri